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Abstract

Scalar fieldsarisein every scientific application. Existing scalar
visualization techniques require that the user infer the global
scalar structure from what is frequently an insufficient display
of information. We present avisualizati on technique which nu-
merically detects the structure at all scales, removing from the
user the responsibility of extracting informationimplicit in the
data, and presenting the structure explicitly for andysis. We
further demonstrate how scalar topology detection proves use-
ful for correct visualization and image processing applications
such as image co-registration, isocontouring, and mesh com-
pression.
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1 Introduction

Visualizationof scaar fieldsiscommon acrossall scientificdis-
ciplines, including geographic datasuch as atitudeand temper-
ature, medical applicationswith CT and MRI values, and pres-
sure and vorticity magnitude in computational fluid dynamics.
The purposeof thevisuaizationisto aid theuser in understand-
ing the structure of the data[29].

Common methods for visuaizing scalar
fields can be grouped into two broad classes. First are methods
whoseaim isto detect structureand present adisplay to theuser
which communicatesthisstructure. Critical tothese methodsis
the definition of structure, and how well the definition matches
thevisualization users' need. Second are those methods which
attempt to display the entire scalar field simultaneously, |eav-
ing interpretation of the display to the user. Combinations of
thetwo methods serve to reinforce the information provided by
each visualization. We will use for comparison one technique
from each of these categories, i socontouring and col ormapping.

Isocontours, or constant valued curves and surfaces from
continuous 2D and 3D scalar fields, are a common visudiza-
tiontechniquefor displaying scalar field structure[21]. By their
definition, isocontours represent the data only at discrete lev-
els, and as such are an effective technique for determining the

“shape” of objectsin the scalar field. Shape extraction as de-
fined by isocontoursiswell understood and appreciated in many
applications, such as Medical Imaging, asisocontoursin a den-
sity field may resultinrealistic model sof skeletd structure, skin
surface, or various organg 22]. Also implicitin their definition
isthe fact that isocontours are an incompl ete representation of
the scalar field, as one can only infer from an isocontour that
the data to one side is above the isovalue, and the data to the
other sideisbelow theisovalue. With multipleisocontours, the
scalar field effectively becomes segmented into afinite number
of ranges, within which the structure remains unknown. The
same claim of incompleteness can be made of any technique
which only displays a portion of the field. Moreover it is not
obvious which isovalues one should select and how namy of
them [4].

Colormapping of scalar data defines a discrete or continuous
range of colors onto which the scalar values are mapped. Use
of color, though proven to be useful in many visuaizationtech-
niques, introduces complicationsdue of perceptua issues, such
ascolorblindness. Colormapsmay al so mislead theuser, for ex-
ample when small-scale structurein the datais washed out due
to the large range of values taken on by the variable.

Scientific datawhichistime-varyingin natureintensifiesthe
problemswiththe methods described above. Inthetypical case,
ascadar variable may take on a wide range of values over the
courseof asimulation, however at certain timesduringthesim-
ulation the range may be much smaller. With both isocontours
and colormapped display, it isdesirableto use the same isoval-
ues and colormap for each time-step being displayed in order
to reduce the possibility of introducing artifacts which may be
misinterpreted as features. This requirement complicates the
task of choosing a good colormap or selection of isovaluesfor
atime-varying visualization.

In this paper we present a complementary scalar structure
visualization technique which does not depend on the user to
determine structure from the graphica display, but instead de-
fines, computes, and displaysthe structure of a scalar field di-
rectly. Through detection of dl critical points (saddles, max-
ima, and minima), we construct an embedded graph by com-
puting integral curves in the gradient field from saddle points
to an attached critical point, asillustratedin figure 1. Curvesin



Figurel: Isocontours(dotted) of part of ascalar field along with
the critical pointsand integral curves

thistopologica graph are always perpendicular to isocontours
of thescalar field[ 23], and wewill demonstratethat these curves
contain complementary informationto that provided by display
of isocontoursor col ormapped scalar fields, providingamethod
which is both useful in its own right and which aso enhances
the commonly used techniquesfor visualizing scalar fields. We
further indicatethat thedefinition of structurewhichisprovided
by the scalar topology proves useful in severa additiona visu-
alization and image processing applications.

2 Related Work

Much of the work in enhancing colormapped visualization
of scalar fields has dedlt with determining “good” colormaps
which effectively display the data. Bergman, et. d., define
rules based on perception, user goals, and data characteristics
to automatically select a colormap which will meet the user
requirements[6]. Histogram equalization is a technique which
spreadsthedataevenly over therange of colors, using theavail-
able color spaceto it’sfullest[28]. The result isthat each color
inthe colormap is used an equal number of times. Gershon[14]
uses“ Generaized Animation” to display otherwisestatic scalar
data in a dynamic way, taking advantage of the ability of the
visual system to detect dynamic changes. Animation draws at-
tention to fuzzy detailsin the data which may not be detected
in the static representation.

There has been several papers in detecting isocontoursin 2d
and 3d scalar datg[21, 30]. Additional work concentrates on
handling problems in regions containing saddle points which
cause difficulty in determining the topologica structure of the
surface contained intheregion [25, 31, 26]. The problem of de-
tecting ridges and valleysin digita terrain has been treated in
severa paperg12]. McCormack, et. a. consider the problem
of detecting drainage patternsin geographic terrain[24]. Inter-
rante, et. al. have used ridgeand valley detection on 3d surfaces
to enhance the shape of transparently rendered surfaceq[19].
Extremagraphs were used by Itoh and Koyamada to speed iso-
contour extraction[20]. A graph containing extreme pointsand
boundary pointsof ascaar field can be guaranteed to intersect

every isocontour at least once, alowing seed pointsto be gener-
ated by searching only the cells contained in the extrema graph.

Helman and Hesselink detect vector field topology by clas-
sifying the zeros of avector field and performing particle trac-
ing from saddle points[17]. The resulting partitioning consists
of regions which are topologically equivaent to uniform flow.
Globus, et. al. describe a software system for 3d vector topol-
ogy and briefly note that the technique may aso be applied to
the gradient of a scalar field in order to identify maxima and
minima[15]. Bader et. a. and Collard et. a. examine the gra-
dient field of the charge density inamolecular system[2, 1, 10].
Thetopology of thisscalar field representsthe bondslinkingto-
gether the atoms of the molecule. Bader goes on to show how
featureshigher level structuresinthetopol ogy represent chains,
rings, an cages in the molecule. Bader's example is a defin-
ing motivation for devel oping the automatic extraction and vi-
sualization of topology from ascdar field. In many situations,
topology provides a more intuitive and physically meaningful
visuaization. Grosse [16] also presents methods of approxi-
mating the scalar topology of the electron density function of
proteins. One of his methods uses tensor product B-spline fits
while the other scales Fourier coefficients of the electron den-
sity function.

3 Scalar Topology

Previoustechniquesfor enhancing scalar field visuaization at-
tempt to address the inability of colormapping and isocontour-
ingto capture and directly represent featuresin thedata. We ad-
dress this problem not through feature enhancement using ex-
isting visualization techniques, but through direct feature detec-
tion and display. For our purpose of detection and display, we
define the topology of a scaar field .S defined with domain D
to consist of the following:

1. Theloca maximaof S
2. Theloca minimaof S
3. Thesaddle pointsof S
4. Selected integral curvesjoining each of the above

Integral curves are defined as curves which are everywhere
tangent to the gradient field of S. Intuitively, these curves rep-
resent the path followed by a heat-seeking particlein atemper-
aturefield, or the path followed by aball rollingdown ahillina
field of elevation values. Invector field topology, the curvesad-
vected intheflow field segment thefield into regionswhich are
topologically equivaent to uniform flow. In the case of scalar
topol ogy, integral curves segment thefield intoregionsinwhich
the gradient flow isuniform, or in other words, the scalar func-
tionis monotonic. Such a segmentation of the scalar field into
regions of simple behavior reveals the structure of the scalar
field for the visuaization user.

We outlinethe procedure for visualization of scalar topology
asfollows:



1. Detect stationary (critical) pointsin S.
2. Classify gtationary points.
3. Integrate selected integral curvesin gradient field.

In the following subsections, we will define our modd of
a continuous scalar field and look at each of the steps defined
above.

3.1 Scalar Fiddd Moded

Intypical scientific applications, dataisrepresented at the nodes
of amesh of elements and interpolated linearly across theinte-
rior of the elements. Such a datamodel is C° continuous and
has a discontinuousgradient field, making it unsuitablefor our
purposeof tracingintegral curvesinthegradient field. We seek
to construct a datamodel such that:

1. Theorigina noda dataisinterpolated.

2. Thegradient at the boundariesis C° continuous.

3. Critical pointsinthe scalar field are not removed, and the
number introduced is kept small.

Figure2: Artificial extreme pointsintroduced by central differ-
encing

We could satisfy the first two properties by computing
derivatives by a method such as centra differencing, which
would uniquely define a C'* continuous bi-cubic scalar inter-
polant [3]. However, such a choice of interpolant is likely to
violate our third requirement by introducing critical points, as
illustrated for the 1-D case infigure 2.

To address this problem, we use a “damped” central differ-
encing scheme as described in the following sections. There-
sulting scalar field will remain a piecewise C'! continuous bi-
cubicfunction, whichwerepresent in Bernstein-Bézier formas:

3 3
S=>"3 w ;B (x)B}(y) x,yel0,1]
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where
Br(t) = ( 7; )ﬁ'u_t)”—i

As aresult, the derivatives of the scalar field can be repre-
sented as.
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Having computed the damped partia derivatives and mixed
partialsfor each vertex, the weightsw; ; are computed accord-
ing to the above equations. For (z,y) = (0, 0), we get:

wo,0 = 50,0

105
wo,1 = Spo0+ 3ar

198
3 dy
10S 108 1 928
30x + 30y 90x0y

Similar equationsfollow for the other three vertices of a cell
in2D. The method presented for computing damped central dif-
ferences in the following sections is based on the above equa-
tionsfor theweightsof the surface S, andisdevel oped with the
goal of satisfying our scalar modd criteria defined above.

For further information on smooth surface representations
and for modeling scaar fields, see for example [18, 3]. There
is dso a sparse body of literature concerning curve and sur-
faceinterpolationwhich retains shape, where shapeisgeneraly
thought of in terms of monotonicity or convexity. [8, 9, 5, 13,
11].

wi,0 = Sp0+

wi,1 = Spo +

3.1.1 Onedimensional derivatives

Consider the one-dimensional case of three pointsalong aline,
aspictured in figure 3. We compute the derivativeat 2, asfol-
lows:

o Ify1 >yoandy; > ya, assign 05/0x = 0. Thuswe pre-
servethat amaximum in thelinear field remains a critical
pointin theinterpolated field.

o Likewise, if y1 < yo andy; < ys, assign 9.5/0x = 0.



Figure 3: Damped central differences maintain critical points

o Otherwise, the point dataat ¢, «1, and z, are monotonic,
and we dampen the central difference as follows:

05/0x = sign(xl)mm(abs(u ,
o — X
3(y1 — vo) 3(y2 — w1)
b b
“ 8(2 1 — X ),Cl S(Q(l‘z — l‘l)
where sign(z1) = —1 if the data is monotonically de-

creasing at z; and sign(x,) = 1 if the datais monotoni-
caly increasing.

Thefirst two conditionsguarantee that extreme points of the
linear line segments remain critical pointsin the cubic inter-
polant. Thethird conditionis motivated by the control polygon
of the resulting cubic curve. Asillustrated in figure 3, damp-
ing the central difference by a multiple of the one sided differ-
ence guarantees that the control points between =, and x5 will
liewithintheranges [y1, (y1 + y2)/2] and [(y1 + y2) /2, y=], re-
spectively. Thus, we assure that the control pointswithin each
segment will be monotonic, and guarantee that the derivative
in this segment will not vanish, asillustrated in the closeup in
figure4

Figure4: Closeup of segment from figure 2 illustrating guaran-
tee of monotonicity

3.1.2 Two and higher dimensional derivatives

Intwo dimensions, thefirst partials 9.5/ 9« and 9.5/ 9y are han-
dled as in the one-dimensional case, with one minor exception.
Rather than scaling each component of the gradient, the central
differenceistaken in both directions, and the result is damped
by the minimum of the scaling factors in either direction. In
other words, in higher dimensions we dampen not each com-
ponent of the gradient, but the magnitude of the gradient, leav-
ing the direction the same as that computed from central dif-
ferences. This simple extension of the one-dimensional case
is sufficient to guarantee that critical points are not introduced
along the edges in two dimensions, edges and faces in three di-
mensions, and so on.

®  =origina vertex weight

O =weight determined by
first partial derivatives

O  =weight determined by
mixed partial

--------------- = eight linear monotonicity
constraints to be satisfied
by mixed partial

Figure5: Constraints on the mixed partial derivativefor 2D

What remains in the 2D case is to compute the mixed par-
tid 92S/0xdy. For this, we again resort to the equations for
computing the weights w; ;. Having computed the first par-
tials, our weights are fixed along al edges of the mesh, as il-
lustrated in figure 5. We would like to constrain the mixed par-
tia at each vertex such that the four interior weights adjacent to
the vertex are guaranteed to satisfy the monotonicity condition
in both directions, which is effectively equivalent to eight one-
dimensional congtraints. This is clearly overconstrained, and
examples for which §%5/9x 8y cannot meet al constraints are
easy to construct. We compute the eight linear constraints and
examine them to see if there exists a ssimultaneous solution. If
thereis not, then we set 925/9xdy = 0 in order to minimize
the twist on the resulting patch[11]. We point out the fact that
we maintain monotonicity along the edges to guarantee that a
bi-linear cell which contains a saddle point will contain a sad-
dlein the shape preserving interpolated field.

Similar sets of linear constraint equations are examined and
resolved for the higher order partialsin 3D and higher, asillus-
trated in figure 6.

3.2 Computing Critical Points

Critical pointsof ascalar function are defined as pointsat which
the gradient vanisheg[23]. For a bicubic function (2D) or tricu-
bic function (3D), computing the positions of critical points
amounts to solving a non-linear system of equations. How-



® = Original vertex weight
O = Weight determined by fist order
partial derivatives

U = Weight determined by second order
partial derivativesintwo variables

/A= Weight determined b% third order
partial derivativein threevariables

Figure 6: Constraints on the mixed partia derivativesfor 3D

ever, dueto the specia construction of our interpolant, we have
knowledge about where the critical points will occur, and can
compute them quite efficiently.

Critical points which occur at the vertices of the mesh will
be preserved, and can be computed from the bilinear or trilin-
ear field respectively, with the guarantee that they exist as well
inthe higher order shape preserving interpolant. Critical points
interior to acell will occur inlocationsat which the monotonic-
ity constraint could not be met. In smooth parts of the field,
there will be no problem computing a monotone field, which
will guarantee the absence of critical points. In cells at which
congtraintswere violated, we perform subdivision of thecell in
order tolocatethecritical points, followed by Newton-Rhapson
iteration to refine the positions of the zeroes. Saddles from the
initial bilinear or trilinear mesh can be approximated by com-
puting the position of the bilinear or trilinear saddle anayti-
cally, followed by iteration in the bi-cubic or tri-cubicfield, re-
spectively.

3.3 Clasdsification of Critical Points

Qualitativeinformation about the behavior of the gradient field
near acritical pointisobtained by anaysis of the Hessian of .5,

givenfor 2D:
928 928
dx? dxdy
928 928

The eigenvalues and eigenvectors of the above matrix de-
termine the behavior of the gradient field and hence the scaar
field near the critical point, much the same as for the behav-
ior of a general vector field[7, 17]. One difference to note is
that for a gradient field, the matrix of derivativesis symmetric
(02S/0z0y = 92S5/dydx), and therefore the eigenval ues will
al bereal. Thisisintuitively expected, asimaginary eigenval-
uesindicaterotation about the critical point, and agradient field
isanirrotational vector field. Thisobservationalowsusto sim-
plify the classification of critical pointsas depicted in figure 7.

A positive eigenvalue corresponds to gradient flow away
from the critical point, while a negative eigenvalue indicates

B 'Y =

Maxima Minima Regular Saddle
Degenerate Saddle Constant

Figure 7: Some of the scalar critical points

gradient flow toward the critical point. In the case of a sad-
diepoint, thereis gradient flow toward and away from the crit-
ical point, distinguishing it from the field behavior near other
critical points. In this case, the eigenvectors corresponding to
the positiveand negative eigenva uesdefine the principal direc-
tionsof theflow toward and away from the saddl e, respectively.
Itisthisproperty that will be used inthenext section to compute
critical curvesin the gradient field.

3.4 Tracing Integral Curves

Having computed and classified thecritical points, thefinal step
for computing the scalar topol ogy isthetracing of selected crit-
ica curves between the detected points. Even for three and
higher dimensional scalar fields we restrict our focus to only
computing critical curves, and ignore critica surfaces and hy-
persurfaces and other degeneracies inthefield,

Saddle points have the property that the eigenvectors of the
Hessian are the separatrices of the saddle. A particlefollowing
the gradient field aong the these directionswill come to rest at
thesaddl e point, whileparticlessightly to either side of the sep-
aratriceswill diverge rapidly near the point. Itisfor thisreason
that saddle points and the critical curves associated with their
separatrices are useful in determining the structure of a scalar
field. The number of critica curves emanating from saddles
along separatricesistwicethefield dimension. In 2D, four crit-
ical curves are computed for each saddle point, two in the di-
rection corresponding to the positiveeigenvalue, and twoin the
direction corresponding to the negative eigenvalue. In 3D, the
number issix, and so on.

Integral curves are computed using the following 4th order
adaptive step Runge Kuttaintegration in the gradient field[27],
where At isthetime step which adapts per iteration, and #,, is
afield point :

1. k= AtE(Z,)

4

-

2. Fy = At#(F, + &)

3. k3 = Atd(@, + &)



4. ky = AtO(E, + ks)
5. fnp1=dn+ B+ 24 By By o)

Theinitia position for the iterative stepping is placed a small
distance from the saddle point along the appropriate eigenvec-
tor. The stepsare bounded such that wetakenolessthan 5 steps
per cell, maintaining a high level of accuracy. Computation of
the critica curve ends when we reach the vicinity of another
critical point within a certain ¢, in which case the curve termi-
nates at that point. Other curves may end at the boundaries of
the mesh.

4 Quality Comparison

Here we compare the qualities of scalar topology visualization
with those of isocontoursand col ormapping.

Integral curves are everywhere orthogonal to isocontours.
The two techniques arise from an orthogonal definition of
“structure” for a scalar variable. Contours are an attempt to
compute and display the exact shape of an object in a scalar
field, while the topology graph attempts to show the relations
among all such objectsinthefield, without giving the detail s of
shapes of particular objects. Note that scalar field topology is
invariant under trandation and uniform scaling. This quality is
very similar to colormapping of scalar variables, in which the
entirerange of variablesismapped into a color space. Tranda
tion and scaling of the scalar variables changes only the map-
ping function, not the result.

5 Examples

Figures 8, 9, 10 and the top two pictures of the Color Plate,
demonstrate the use of scalar topology along with both isocon-
tours and colormapped visualizations of density in an off-axis
pion collision. Figure 8 uses a simple greyscale colormap, and
itisclear that much of theareaof interest in the center iswashed
out. Figure 9 uses a hue-based colormap and adds isocontours
of threeisoval uesto reveal more of thestructureand aid the per-
ception. In figure 10, we show the scalar topology of density.
This image clearly brings out the detail of the structure of the
variable. The top figures of the Color Plate show a closeup of
the interesting topological regions, as well as shows a combi-
nation of all three visualization techniques.

While small scale structure is important in many scientific
applications, in some circumstances the visualization user isin-
terested only in large scale structure. For this situation, we ap-
ply afilter to smooth the data before applying the topol ogy de-
tection algorithm. Figures 11, 12 show two visualizations of
topology in a scalar field representing wind speed. In figure
11, theunfiltered scalar field topol ogy reveal s some noisein the
data. Figure 12 shows the topology for the same data after a
Gaussian filter has been applied.

The middle figures of the color plate shows an example of
scalar topol ogy applied to amathematically defined surface. In

theleft figure the scalar topology is displayed. In the right fig-
ure both topology and four isocontours are displayed. Notice
that even with four isolevelsdisplayed, there are critical points
withincontour regionswhich are not revea ed likethe two max-
imaon the bottom | eft that are not separated by any isocontour.

The bottom figures of the color plate show an example of
scalar topology applied to a 3D scalar fiel ds (the wave function
computed for a high potential iron protein).

6 Other Applications

Computation of scalar topology has the potentia to serve many
other visualization and image processing applications. We
mention only afew here:

Data Corréelation - Due in part to the invariance under trans-
lation and scaling, scalar topology isuseful invisually de-
termining linear correl ation between multiple scalar vari-
ables.

Image Co-registration - Scalar topology in adjacent planes
providesa“1D skeleton” which may be used to align the
planes.

Warping/Morphing - Editing of the scalar backbone may be
used to apply awarping effect to an image, or to warp be-
tween the backbones of two similar images.

Mesh Reduction - The scalar topology may serve asaguideto
aid in computation of reduced resolution meshes.

Surface Triangulation - Adaptive triangulation of arbitrary
mathematical surfaces by decomposition into monotonic
patcheswhich may be subdividedto an arbitrary precision.

7 Conclusions

Existing scalar visualization techniques lack the ability to ex-
plicitly present the structure of a scalar field to the user. We
have presented a definition of scalar structure and a straight-
forward agorithm for computing and displaying the structure.
For typical scientific data, the scalar datamodel remainstrueto
theoriginal linear data, minimizingintroductionof falsecritical
points, and also simplifying the detection of critical points.

The resulting topology visuaization serves to both provide
information which is not available in commonly used scaar
visualization techniques, as well as reinforcing or enhancing
theinformation provided by common visualization techniques.
Furthermore, computation of scalar topol ogy offers promiseto-
ward improving several visualization and image processing ap-
plications.
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Figure 12: Visualization of wind speed from a climate modd:
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